A2LA Named as Member of the NIST Forensic Science Resource Committees

By Teresa C. Barnett, A2LA Director of Quality & Communications

In August 2014, A2LA Program Manager, Karin Athanas, was appointed to the National Institute of Standards and Technology (NIST), Organization of Scientific Area Committees (OSAC), Quality Infrastructure Committee (QIC) and to the National Commission of Forensic Sciences (NCFS), Subcommittee on Accreditation and Proficiency Testing.

The appointment of A2LA on such prestigious committees is a testament to our work and presence in the forensic community and the commitment of A2LA to ensuring that accreditation is accepted everywhere and by everyone.

History

In recent years, efforts by groups such as The Innocence Project, along with concerns voiced by the forensic community, have led to increased interest in the area of forensic science, which has led to the national and international forensic community embracing quality as a key element to ensuring consistent and competent analysis of forensic evidence.

In 2005 The National Academies was directed by Congress to study the state of forensic science in the United States. The resulting study, published in 2009 and entitled “Strengthening Forensic Science in the United States: A Path Forward”, identified 13 key areas that required immediate action to ensure the continued reliability and quality of analyses being performed.

The report’s recommendations were considered by some to be extreme or untenable, but out of it came renewed commitment to bettering forensic science and aggressively pursuing quality and competence.

In 2013 NIST and the U.S. Department of Justice (DOJ) signed a Memorandum of Understanding (MOU) in support of the formation of a National Commission on Forensic Science (NCFS). This joint initiative to improve forensic science in the United States also resulted in the creation of the Organization of Scientific Area Committees (OSAC).

Under the NIST / DOJ MOU, the NCFS is tasked with developing policy recommendations that will then be considered by the Attorney General, and with endorsing documents developed by the OSAC. The OSAC is tasked with conducting research and supporting the development of methods, standards and guidance.

Continued on page 2
Continued from page 1
A2LA Named as Member of...

Moving Forward
As a committee member of the OSAC QIC, Ms. Athanas will assist in the development of a Forensic Science Code of Practice, provide guidance on quality issues, act as liaison to the Scientific Area Committees, work with outside standards development organizations and assist in the development of impact statements.

As a subcommittee member of the NCFS, Ms. Athanas will assist in the development of Policy Proposals, Directive Recommendations, and Views Documents which will then be submitted to the NCFS for approval and submission to the Attorney General. Ms. Athanas is currently tasked to lead the development of a Views Document on proficiency testing and will be working closely with fellow subcommittee members and the proficiency testing community (including A2LA’s own Rob Knake, A2LA Program Manager of the ILAC-recognized proficiency testing provider accreditation program) to ensure a well-balanced and informative document.

For more information about the OSAC and NCFS please refer to the following pages:
NCFS: http://www.justice.gov/ncfs/meetings.html
OSAC: http://www.nist.gov/forensics/osac.cfm

For more information about the A2LA forensic accreditation program, please see the A2LA forensic webpage: http://www.A2LA.org/forensic or contact Karin Athanas at kathanas@A2LA.org (301 644 3236).

A2LA Technical Forum Sponsorship Opportunities
A2LA is pleased to announce sponsorship opportunities for the 2015 A2LA Technical Forum! Enhance your business credibility, leverage lead generation, increase brand awareness and recognition, and generate new business partnerships by being a sponsor at the A2LA Technical Forum. Please visit www.A2LA.org/techforum for more details on the Technical Forum and the various sponsorship opportunities that are available.

A2LA Accredits First Two FedRAMP Third Party Assessment Organizations (3PAOs)

By Samantha Dizor Carter, A2LA Senior Accreditation Officer

A2LA is proud to announce the accreditation of its first two Third Party Assessment Organizations (3PAOs) to ISO/IEC 17020:2012 under the Federal Risk and Authorization Management Program (FedRAMP).

Booz Allen Hamilton and Honeywell Technology Solutions, Inc. were recognized by the FedRAMP Program Management Office (PMO) on August 5, 2014 after a thorough on-site assessment of their FedRAMP inspection activities.

“Honeywell Technology Solutions Inc., or HTSI, is pleased to be an accredited Third Party Assessment Organization [3PAO] for the critical Federal Risk and Authorization Management Program [FedRAMP],” said Carey Smith, President HTSI. “We are pleased to be one of the first companies to achieve accreditation under the new FedRAMP 3PAO process. As a 3PAO, HTSI is authorized to conduct security control assessments and make the process as efficient as possible. We look forward to working with both federal agencies and private companies as they strive to achieve compliance.”

Under the FedRAMP Security Assessment Framework 3PAOs are now required to be assessed by A2LA in order to be accredited by the FedRAMP PMO. Through the use of technical experts as assessors, the A2LA assessment process involves a rigorous evaluation of technical competence of the 3PAOs, as well as an assessment of their compliance to the general requirements of ISO/IEC 17020. 3PAOs that are currently recognized under the FedRAMP program are also required to be assessed by A2LA in order to maintain their current accreditation through FedRAMP.

For additional information regarding the A2LA FedRAMP Inspection Body accreditation program, please see the A2LA program webpage (www.A2LA.org/FedRAMP) or contact Steve Medellin at 301 644 3228 or smedellin@A2LA.org. For more information regarding the FedRAMP Program, please visit the FedRAMP website at http://cloud.cio.gov/fedramp.
A2LA-Sponsored NCSLI Meeting Announced

By Phil Smith, A2LA Director of Public Affairs

Laboratory Testing, Inc., an A2LA-accredited laboratory located in Hatfield, PA, will be hosting an NCSLI meeting. Scott Mimbs, soon to be A2LA’s newest trainer, will be presenting during this meeting. Please see the details below for more information:

Philadelphia Section Meeting 1123
Thursday, October 23, 2014

NCSLI Region Coordinator & Meeting Contact:
Marcus McNeely, Northeastern US Division VP
Phone: 814-234-2417
FAX: 814-234-7077
Email: mbmcneely@coolblue.com

Meeting Time:
8:00 AM – 3:45 PM

Meeting Host & Location:
Laboratory Testing, Inc.(LTI)
2331 Topaz Drive
Hatfield, PA 19440

Cost to Attend Meeting:
No charge

Meeting Sponsor:
A2LA

Meeting Overview:
This meeting will focus on risk assessment, measurement uncertainty for pressure and an update on metrology from NIST.

Meeting Speakers:
Scott Mimbs, NASA (Retired)

A U.S. Marine veteran and recently retired from NASA where he was the agency’s Metrology and Calibration Program Manager, Mr. Mimbs has over 30 years of experience in the aerospace field, with positions that include aircraft mechanic (FAA certified A&P and private pilot), Space Shuttle mechanical technician, Titan rocket technician and Titan Ground Support Engineer. After earning his Mechanical Engineering degree in 2001, Mr. Mimbs left aerospace to work in the power generation industry as a Fluids Design Engineer, leading several large international projects. Returning to aerospace, he joined NASA in 2005 where he led NASA’s Metrology and Calibration (MetCal) Program until his retirement in 2013. As the head of NASA’s MetCal Program, Mr. Mimbs worked with NASA, other government agencies and industry experts to promote and advance the science of metrology. He initiated and led the development of a NASA measurement quality assurance handbook, authored several international metrology papers and developed several training programs covering measurement uncertainty and measurement decision risk. His diverse experience in systems design, testing, manufacturing and maintenance has provided Mr. Mimbs with a unique perspective on how metrology can be a cost-effective tool within the lifecycle of products.

Topic: Metrology and the Consequences of Bad Measurement Decisions

Metrology is the science of measurement, and, in the simplest terms, provides the measurement data used to make decisions. Measurement-based decisions impact all phases of product development. Bad measurement data can lead to bad decisions and the consequences of these decisions can flow from one phase of product development to the next. The consequences of bad measurement-based decisions can range from monetary losses in the billions of dollars, such as the 1990 Hubble Space Telescope mirror, to the loss of life, such as the 2005 British Petroleum Texas City refinery disaster. The development of safe, reliable, cost-effective products or services requires the inclusion of all aspects of metrology into a Quality Management System (QMS). There are three essential elements that provide “good” measurement data: measurement requirements, calibration of equipment and measurement processes. Although calibration services are the most recognized element, failures in the measurement requirement and process elements are generally more costly in terms of money and product/mission success. For measurements to sufficiently support decisions, all three aspects of metrology must be adequately addressed in the QMS. This presentation demonstrates the influence of metrology throughout the lifecycle and then, through factual case studies, illustrates the negative consequences when one or more of metrology’s elements fail.

Greg Strouse, NIST

A world-class expert in contact thermometry, Mr. Gregory Strouse has led the activities of the NIST Platinum Resistance
Thermometer Laboratory since 1989. Using these facilities, he has extensively investigated and improved the performance of platinum resistance thermometers and the fixed-points used to calibrate them. Mr. Strouse has led the automation and refurbishment of both the NIST Platinum Resistance Thermometer Laboratory and the Industrial Thermometer Calibration Laboratory. In other research, he has improved the thermodynamic basis of the temperature scale through acoustic thermometry and has developed new thermometer types based on sapphire dielectric resonators. He is the author of more than 60 papers on thermometry. Mr. Strouse leads regular workshops on the choice of thermometers for the Measurement Science Conference, and leads several international working groups on temperature standards.

Topic: Who needs calibrations anyway?

A simple answer is that everyone who manufactures a product needs calibrations of reference artifacts. A more complex question is how a company determines what is a “good enough” calibration to meet current and future technology needs. Whether to calibrate and to what level to calibrate an SI-traceable reference artifact is a broad spectrum question that applies across multiple sectors of the global economy. When calibrations are performed to maintain a robust quality system with internal measurement assurance, the impact to both legacy and advanced manufacturing often goes unnoticed. However, when calibrations are either ignored or reduced to save costs the results are seen in the production loss of yield – this influence is often delayed and overlooked when a root cause analysis is performed. As technology continues to evolve in disruptive ways, the underlying measurement service infrastructure can continue to provide a stabilizing influence on the quality of product, efficiency of production, and reduction of barriers to trade. At some point in the future, technology will advance to such a level that a sensor and a standard will be indistinguishable, thus obviating the need for a traditional calibration. This talk explores examples of how NIST measurement services are evolving to meet the needs of the ever-changing manufacturing landscape to ensure that the impact of a calibration continues to go unnoticed.

Joshua Biggar, Fluke Calibration

A metrologist for Fluke Calibration specializing in pressure instrumentation, Mr. Biggar has been with Fluke Calibration/DH Instruments for 10 years after serving seven years in the U.S. Air Force as a PMEL Craftsman. Josh holds a B.S. degree in Business/Electronic Systems Technology from Wayland Baptist University.

Topic: An Uncertainty Analysis of Fluke Calibration Fused-Quartz Bourdon Tube Pressure Products

The forced-balanced fused-quartz Bourdon tube (QBT) technology is a proven pressure measurement method, which has been used in the metrology field for over 50 years. In the summer of 2010, Fluke Calibration acquired Ruska Instrument Corporation from General Electric’s Sensing and Technologies division, which added this unique, high-performance pressure measurement technology to the Fluke Calibration family of pressure products. The celebrated pedigrees in Fluke Calibration’s pressure coterie that employ QBT technology are the 7000 Series pressure products. 7000 Series pressure controllers and indicators descend from a heritage of unmatched performance and residence in the metrology community. This discussion aims to explain the unique facets of QBT technology, its basis of operation and the uncertainty classes available.

Meeting Schedule:

- 8:00 AM – 8:30 AM Registration
- 8:30 AM – 8:45 AM LTI Intro and Welcome Message
- 8:45 AM – 9:00 AM NCSLI Update
- 9:00 AM – 10:00 AM Who needs calibrations anyway?
 - Greg Strouse, Physical Measurement Laboratory, Sensor Science Division, Leader, NIST
- 10:00 AM – 10:15 AM Break
- 10:15 AM – 12:00 PM Metrology and the Consequences of Bad Measurement Decisions
 - Scott Mimbs, NASA Metrology Program Mgr. (Retired)
- 12:00 PM – 1:00 PM Lunch
- 1:00 PM – 2:00 PM An Uncertainty Analysis of Fluke Calibration Fused-Quartz Bourdon Tube Pressure Products
 - Joshua Biggar, Fluke Calibration
- 2:00 PM – 2:20 PM Break
- 2:20 PM – 2:45 PM Q&As and Group Picture
- 2:45 PM – 4:00 PM Tour of LTI
- 4:00 PM Adjourn

To register, please visit the NCSLI website at:

http://bit.ly/1nzioIW
Title: Assessment of Laboratory Competence
- October 20-24, 2014 - Reno, NV
 ($1595.00 non-members, $1545.00 A2LA members)

Title: Introduction to Measurement Uncertainty
- November 17-18, 2014 - San Diego, CA
 ($795.00 non-members, $745.00 A2LA members)

Title: ISO Guide 34:2009 and Accreditation for Reference Material Producers
- October 20-21, 2014 - Frederick, MD
 ($795.00 non-members, $745.00 A2LA members)
 (This course is held at A2LA Headquarters. Please contact A2LA if you need recommendations for hotel accommodations.)

Title: ISO/IEC 17025:2005 and Laboratory Accreditation
- November 19-20, 2014 - San Diego, CA
 ($795.00 non-members, $745.00 A2LA members)
 (Please note that this is a 2-day version of the course.)

Title: Internal Auditing
- October 27-28, 2014 - Frederick, MD
 ($795.00 non-members, $745.00 A2LA members)
 (This course is held at A2LA Headquarters. Please contact A2LA if you need recommendations for hotel accommodations.)

Title: Measurement Performance Improvement Using Statistical Tools
- November 19-20, 2014 - Frederick, MD
 ($795.00 non-members, $745.00 A2LA members)
 (This course is held at A2LA Headquarters. Please contact A2LA if you need recommendations for hotel accommodations.)

Title: Root Cause Analysis and Corrective Action
- November 21, 2014 - San Diego, CA
 ($495.00 non-members, $445.00 A2LA members)

Venues:

October 20-24, 2014
(Assessment of Laboratory Competence)
Grand Sierra Resort and Casino
2500 East 2nd Street
Reno, NV 89502
(775) 789-2000
Rate: $74.00 per night
(room rate cut-off: September 19, 2014)

November 17-21, 2014
(Introduction to Measurement Uncertainty; ISO/IEC 17025:2005 and Laboratory Accreditation)
San Diego Solamar
435 6th Avenue
San Diego, CA 92101
(619) 819-9533
Rate: $149.00 per night
(room rate cut-off: October 27, 2014)

For additional information, please contact Julie Collins, A2LA Training Manager, at 301 644 3235 or jcollins@A2LA.org.
Accredited Calibration Certificates – Sorting Fact from Myth

By Pam Wright, A2LA Accreditation Manager, Calibration

It is fairly common for laboratory professionals to struggle with managing all of the various requirements that must be met for reporting accredited calibration results. Some of the difficulty occurs because there are many requirements from various bodies, such as ISO, which publishes ISO/IEC 17025, 17020, 15189 and other standards, and ILAC, which publishes the P-series standards (e.g., P14). Even the test standards used by laboratories include calibration reporting requirements that must be met. There are often additional elements required in the contract for service that also need to be included in the certificate or report. Finally, there are issues that arise because of assumptions or expectations regarding accredited calibrations that aren’t based on the actual requirements or the customer contract but rather on what is generally considered to be common sense.

In this article, I present the eleven most common myths regarding accredited calibration certificates encountered by A2LA in working with our customers. It is my sincere hope that this article will help accredited organizations sort the facts from the myths when evaluating an accredited calibration certificate.

Myth #1: If a calibration laboratory is accredited then you will automatically receive an accredited calibration certificate.

False. The fact is that calibration providers often offer several levels of service including non-accredited and accredited calibrations. It’s best not to assume that, simply because a laboratory is accredited, you will automatically receive accredited results. When asking for service, be sure to specifically request inclusion of the accredited symbol and certificate number in your report.

Myth #2: A generic statement such as “The laboratory is accredited to ISO/IEC 17025 by XYZ” means that the results on the calibration certificate are accredited.

False. The fact is that this generic statement simply advertises that the laboratory is accredited but does not reference their exact Accrediting Body’s certificate number for traceability to their Scope of Accreditation and, therefore, the calibration is not considered to be accredited. A phrase such as “The results are accredited in accordance with ISO/IEC 17025 by XYZ, Certificate Number 0000.00” would be deemed equal to using the accredited symbol with certificate number.

Myth #3: An accredited laboratory always takes the measurement uncertainty into account when making a statement of compliance.

False. The fact is that ISO/IEC 17025 does require the measurement uncertainty to be taken into account when issuing a statement of compliance (such as in/out of tolerance or pass/fail), it is possible that the calibration laboratory included a clause in the contract for service that states that they don’t take measurement uncertainty into account when making a statement of compliance. In these cases and upon agreement with the contract language, both parties agree to share the risk that the instrument might be out of tolerance when uncertainty is taken into consideration. It then becomes the responsibility of the owner of the equipment to review the data against the tolerance or specification, taking into account the reported uncertainty, and to decide for themselves whether the instrument meets the specification and, if not, what type of impact this may have on their measurement.

Myth #4: If a calibration laboratory is accredited then you will automatically receive measurement uncertainty on the calibration certificate.

False. The fact is that Accrediting Bodies have various rules when it comes to reporting measurement uncertainty. Some require it to be reported in all cases where the accredited symbol with certificate number is used (A2LA requires this), while others allow the accredited laboratory to decide when to report the uncertainty. It is always best to specify in your request for service the inclusion of measurement uncertainty as a safeguard to ensure you always receive it.

Continued on page 7
Myth #5: Measurement uncertainty can be listed in three or more significant figures.

False. The fact is that ILAC P14:01/2013 requires measurement uncertainty to be rounded to, at most, two significant figures.

Myth #6: When a calibration laboratory includes a “standard method” such as an ASTM or ASME method on their scope of accreditation, you will automatically receive an accredited calibration using this “standard method” when you purchase calibration from this provider.

False. The fact is that calibrations can be performed many different ways. If you conduct a search for caliper calibration in GIDEP, for example, you’ll receive over a hundred different procedures for this same calibration. When an accredited laboratory advertises on their scope that they can provide service in accordance with an ASTM or ASME document this does not mean that you will automatically receive a calibration in accordance with those processes. It is possible that the laboratory could propose a different calibration process when contracting for service. If you need an ASTM- or ASME-compliant calibration, it is best to specify this in your request for service.

Myth #7: Inclusion of NIST test numbers in the calibration certificate is sufficient to demonstrate traceability to the SI through NIST.

False. The fact is that NIST test numbers are for NIST administrative purposes only and do not confer traceability. The International Vocabulary of Metrology (VIM) defines metrological traceability as the “property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty”. Therefore the certificate, in order to be deemed traceable, must contain the measurement result and the measurement uncertainty. The calibration provider must use reference standards whose certificates also contain a measurement result and measurement uncertainty so that an unbroken chain of calibrations back to the SI through the National Metrology Institute (NMI) (such as NIST) is established where each link in the chain adds to the overall measurement uncertainty. Be sure that all of your accredited results contain data and measurement uncertainty and not just NIST test numbers.

Myth #8: An accredited calibration laboratory can decide the calibration interval for my instrument.

False. The fact is that the owner of the equipment decides the calibration interval and should inform the calibration provider what interval is needed when contracting for service. In some cases a calibration provider will include a “default” calibration interval in the contract unless they are informed of a specific interval desired by the customer.

Myth #9: All the items noted in section 5.10.2 and 5.10.4 of ISO/IEC 17025 must be included in accredited calibration certificates.

False. The fact is that there are caveats found in 5.10 that allow for cases where information may be excluded from the calibration certificate. Section 5.10.2 itself says, “Each test report or calibration certificate shall include at least the following information, unless the laboratory has valid reasons for not doing so.” If there are elements of 5.10.2 or 5.10.4 that you need on the resulting calibration certificate, it is best to specify this in writing when contracting for service.

Myth #10: Before and after data is always included in accredited calibration certificates.

False. The fact is that ISO/IEC 17025 only requires reporting of before and after data in cases where the instrument has been adjusted or repaired. If you need this information, regardless of adjustment or repair, it is best to specify this in writing when contracting for service.

Myth #11: The name and signature of the calibration technician is required to be included on the calibration certificate.

False. The fact is that the name, function and signature or an equivalent identification of the person authorizing the calibration certificate (such as a code or personnel ID) is required. The name, function, signature (or equivalent identification) of the technician who performed the calibration is not required unless they are also the authorizing authority.

For questions about this article, please contact Pam Wright at pwright@A2LA.org. 📞
Regarding the Use of Accredited Reference Materials

By Rob Knake, A2LA Program Manager, Proficiency Testing Provider Accreditation Program

A2LA has always strived to be the leader in accreditation service and we have that goal in mind when making decisions regarding our policies and requirement documents. It is to that effect that A2LA decided to lead the way in requiring that, when necessary and readily available, reference materials must be purchased from a reference material producer (RMP) that is accredited to ISO Guide 34:2009 by an accreditation body (AB) that is a signatory to the Asia Pacific Laboratory Accreditation Cooperation (APLAC) Mutual Recognition Arrangement (MRA) or directly from a National Metrology Institute (NMI).

This decision was made for very similar reasons as those that led A2LA and other ABs, both foreign and domestic, to require their accredited organizations to use calibration providers that are accredited to ISO/IEC 17025:2005. It is imperative that the appropriate steps are taken to ensure that our accredited organizations establish and maintain the level of traceability required for the measurements they perform during their daily operations. The intent of the policy was and is to increase the confidence in our accredited organizations’ results and strengthen the value of accreditation for all stakeholders.

The current general policy regarding use of reference materials is found in P102 - A2LA Policy on Measurement Traceability, Section T2 (d), which states:

(T2) A2LA requires that:

(d) For external calibrations of test equipment requiring traceability through reference materials, these reference materials must be recorded in a certificate meeting the requirements of ISO Guide 31 and must also include:

1. an endorsement by the recognized Accreditation Body’s symbol (or otherwise makes reference to accredited status by a specific, recognized accreditation body); and,

2. the A2LA certificate number for A2LA-accredited reference material producers (see R105, Section 1.4.4).

The key to this requirement is that the use of the accredited reference materials is only required for calibration. The International Vocabulary of Metrology (VIM) defines calibration as an:

operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication

The intent of the calibration process, as described in P102, Section T2 (d), is to establish metrological traceability, which the VIM defines as the:

property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty

There has been confusion among our accredited organizations and within the industry regarding when the use of a reference material from an accredited RMP or an NMI is required. This confusion is due to many circumstances which include inconsistent use of terminology, the vast application of use of reference materials, the availability of reference materials from accredited sources, and other similar issues that come along with implementation of a new policy such as this.

Certain areas of testing have struggled more than others when it comes to meeting the requirements of P102. One such area is life science testing which required the development of specific requirements for achieving traceability. A2LA document P113 - A2LA Policy on Measurement Traceability for Life Sciences Testing Laboratories was created through our Life Science Advisory Committee whose membership is made up of staff, assessors, our accredited organizations, and experts from government and private sectors. This document further clarifies the expectations for the use of reference materials as described in section LST-1 (b):

Continued on page 9
A2LA requires that:
(b) All calibrations (i.e., Initial Calibration or ICAL - once known as standardization) of test equipment (i.e. GC, ICP, HPLC, OES, AA, LECO, SEM, UV/VIS) shall be conducted using Reference Materials (when they are relevant and available) obtained from:
- A reference material producer accredited to ISO Guide 34 by an Asia Pacific Laboratory Accreditation Cooperation (APLAC) Mutual Recognition Arrangement (MRA) signatory that is recognized for accrediting reference material producers; or
- A recognized National Metrology Institute (NMI) or designated institute; or
- An organization meeting the requirements of P102a - Policy on Reference Material Traceability for Life Sciences Testing Laboratories.

LST-1(b) is required unless it is shown that the laboratory's customer does not require traceability to the SI. The fact that the customer does not require the reporting of measurement uncertainty on the final report SHALL be confirmed in writing and recorded during contract review (ISO/IEC 17025, section 4.4, unless it contradicts the requirements of 5.10.3.1.c). In these cases, the reference material may be obtained from a reference material producer meeting the purchasing criteria of the laboratory. The purchasing criteria of the laboratory shall ensure that the reference material is appropriate for the intended use (i.e. a reference method requirement defined by regulation, government organization or customer requirement).

LST-1 (b) further clarifies that it is only necessary to purchase accredited reference materials from a Guide 34 provider or an NMI when they are needed for calibration. It also explains that, in those instances where the customer does not require measurement uncertainty or the transfer of traceability to the SI, it is then not required to use a reference material from a Guide 34 accredited provider or NMI. This stresses that the use of this level of reference material is only required when the transfer of traceability and measurement uncertainty are critical to the measurement result (i.e. calibration). If the requirements for measurement uncertainty or the transfer of traceability do not dictate the use of a reference material from an accredited provider or NMI (e.g. quality checks, etc.), then A2LA does not require the use of these materials; it is acceptable to use a reference material that has not been characterized to the extent of a Guide 34 or NMI reference material.

So what is the intent of A2LA's policies on measurement traceability as it relates to the use of reference materials? The intent is that a reference material from a Guide 34 accredited RMP or NMI is used when the traceability and measurement uncertainty of the test result are achieved through the use of that reference material. The intent of the policy is not to require the use of this level of reference material for functions like daily quality control checks, calibration verifications, or other activities that do not directly affect the traceability or measurement uncertainty of the test result. These types of activities can rely on reference materials that are from sources other than a Guide 34 accredited RMP or NMI, or reference materials from an accredited RMP that do have appropriate metrological traceability or have uncertainty that is too large for the calibration at hand. Note that accredited RMPs can produce non-certified RMs and even CRMs can have traceability or uncertainty that might not be appropriate for meeting A2LA traceability policies for every calibration.

The section that follows addresses some frequently asked questions (FAQ) that A2LA receives regarding our policies for the use of reference materials:

What is the difference between a certified reference material and a reference material and which one am I required to use to meet the requirements of A2LA's traceability policies?

The VIM defines a reference material as a:
material, sufficiently homogeneous and stable with reference to specified properties, which has been established to be fit for its intended use in measurement or in examination of nominal properties

The VIM then defines a certified reference material (CRM) as a:
reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures

RM is the more generic term that applies to any material fit for its intended use in the measurement process. CRM is an RM that has been further characterized to ensure traceability, including measurement uncertainties, for specified property values. As the definition for a CRM includes the requirement for traceability and measurement uncertainty, it is often the...
expectation that a CRM is purchased to meet the requirements of our traceability policies [P102 section T2 (d) and P113 section LST-1 (b)].

However, because RM is the more generic term it can apply to something that is not a CRM and this often leads to confusion since a CRM is always an RM but an RM is not always a CRM. Inconsistent use of these terms also leads to further confusion when looking to purchase the appropriate reference material to meet the requirements for traceability. It is critical that you clearly define what level of reference material you require during the purchasing process even if you are working with an RMP that is accredited, as they may offer different levels of products to meet their customers’ needs.

It may help to think about it the same way you do when ordering calibration service for your test equipment. Many calibration providers offer different levels of service, typically the highest level being an “ISO/IEC 17025 Accredited” calibration with data and measurement uncertainties and their accreditation body’s symbol. Remember to be very clear as to what level of product you require when ordering reference materials to meet the traceability policy and, more importantly, to ensure the traceability of your measurements.

If purchasing a reference material from an accredited provider, it will likely always be acceptable to order a CRM; however, because the use of this terminology isn’t required some organizations may use a different term, for the purposes of marketing, to refer to a product that is really a CRM as defined by the VIM.

Where can I find a listing of acceptable providers of reference materials to meet A2LA’s traceability policies?

A2LA’s traceability policies refer to RMPs accredited by an accreditation body (AB) that is a signatory to the APLAC MRA for the accreditation of RMPs. A listing of these ABs may be found on APLAC’s website https://www.aplac.org/aplac_mra.html. The next step is visit the websites of those recognized ABs to review the scopes of accreditation for the organizations that they have accredited in order to ensure that the products you purchase are included on that organization’s scope. You may also visit the website of a National Metrology Institute (e.g., NIST in the U.S.) and review their product offerings. You will note that NIST refers to their reference materials as Standard Reference Materials (SRM) although they meet the definition of the VIM for a CRM.

What if there are no reference materials available from a Guide 34 RMP or an NMI?

If there are no reference materials available then it is up to your organization to purchase materials that are fit for their intended use in your lab and you will want to ensure that you meet the requirements of ISO/IEC 17025 in regards to purchasing and evaluating suppliers of these materials. A2LA’s traceability policies only require use of reference materials from a Guide 34 accredited provider or NMI when available and relevant.

A2LA assessors have been instructed not to cite findings if there are no accredited RMs available. If a deficiency is cited and there are no options available then you should contest that deficiency to your A2LA staff contact and the deficiency should be removed.

I’ve been cited a deficiency for not using an available and relevant reference material from a Guide 34 accredited provider or NMI, what can I do now?

A2LA requires that you purchase the appropriate reference material when your current reference materials have been consumed, reached their expiry date, or when you next order that material. A2LA does not require that you discard all of your currently owned reference materials and immediately purchase new materials, unless there is some reason that the current materials are deemed unfit. In these cases, A2LA typically accepts an indication of the appropriate source for the correct reference materials and the next expected ordering interval as appropriate corrective action.

This above FAQ listing is not meant to be all inclusive and A2LA encourages anyone with questions to contact our offices for further information. We appreciate the efforts of our accredited organizations, assessors, technical advisory committees and all parties involved in the evolution of the traceability policies and the accreditation process in general. A2LA continues to strive to offer “World Class Accreditation” and to be the leader in the area of accreditation service.
New & Updated Documents

By Teresa C. Barnett, A2LA Director of Quality & Communications

The following documents have been updated within the controlled A2LA management system. All of these documents are available on the A2LA website (www.A2LA.org) through the “Search” tool or on your customized “CAB Portal” (as appropriate) unless otherwise indicated.

- **G110** – Guidance on Uncertainty Budgets for Electrical Parameters was revised on May 8, 2014.
- **C310** – Specific Checklist: FCC Telecommunications Certification Body Evaluations was revised on May 30, 2014.
- **P111** – Technical Consensus Decisions from the Electro-Mechanical Advisory Committee (EMAC) was revised on May 30, 2014.
- **R902** – Conditions for Accreditation for Clinical Testing Laboratories Meeting the ISO 15189 Requirements was revised on June 11, 2014.
- **R702** – Conditions for Accreditation for Clinical Testing Laboratories Meeting the CLIA/ISO 15189 Requirements was revised on June 11, 2014. (This document is available by request only.)
- **R602** – Conditions for Accreditation for Clinical Testing Laboratories Meeting the CLIA Requirements was revised on June 11, 2014. (This document is available by request only.)
- **C701** – General Checklist: CLIA/ISO 15189 Testing Laboratory Accreditation Program was revised on July 2, 2014. (This document is available by request only.)
- **C601** – General Checklist: CLIA Testing Laboratory Accreditation Program was revised on July 2, 2014. (This document is available by request only.)
- **G109** – Template for Specifying Accredited Services was revised on July 22, 2014.
- **P117** – A2LA Foreign Travel Policy is a new document, dated August 5, 2014.
- **R211** – Specific Requirements: Wyoming Storage Tank Remediation Testing Laboratory Accreditation Program was revised on August 13, 2014.
- **F909** – Request for Expansion of the ISO 15189 Scope of Accreditation was revised on April 24, 2014.
- **F910** – ISO 15189 Program Technical Staff Matrix was revised on April 25, 2014.
- **F918** – ISO 15189 Program Key Staff Matrix was revised on April 25, 2014.
- **F919** – ISO 15189 Program Equipment Matrix was revised on May 7, 2014.
- **F920** – ISO 15189 Program Contract and Service Provider Matrix was revised on May 9, 2014.
- **F904** – ISO 15189 Proficiency Testing Data Submission Form was revised on July 11, 2014.
- **R901** – General Requirements: Accreditation of Clinical Testing Laboratories Meeting the ISO 15189 Requirements was revised on August 12, 2014.
- **I106** – Available Proficiency Testing Programs was revised on August 18, 2014.

If you have any questions about these updates, please contact A2LA at 301 644 3248 or your Accreditation Officer directly.
In September 2014, the A2LA Criteria Council voted to approve seven new explanations of the ISO/IEC 17065:2012 requirements. These and other explanations may be found on the A2LA website under the “Documents” header and also under, “Accreditation Programs, ISO/IEC 17065 Product Certification Bodies, Explanations for the ISO/IEC 17065 Requirements”.

QUESTION: Does our Certification Agreement need to list who is responsible (our organization or the client) for the evaluation of a product when the scheme allows or requires the product to be evaluated before an application for certification can be filed? Or is a verbal conversation/agreement sufficient?

RESPONSE: Historically, verbal agreements are difficult, if not impossible, to legally enforce. As such, because the Certification Agreement must be legally enforceable and must address the responsibilities of each party, A2LA requires that the responsibilities of the client with regard to any evaluation of the product performed prior to filing the application for certification be clearly outlined in writing in the Certification Agreement. This is also encompassed by clause 4.1.2.2.c.1 which requires the client to “make all necessary arrangements for... the conduct of the evaluation and surveillance (if required)...”

QUESTION: Who determines the adequacy of my organization’s liability coverage arrangements?

RESPONSE: The Certification Body is responsible for determining what “adequate” levels are with respect to having liability coverage arrangements. As exemplified in this clause, such arrangements can include (but are not limited to) insurance and cash reserves. A2LA assessors may raise questions about the adequacy of these arrangements and how the organization felt they arrived at an adequate level of coverage. Additionally, A2LA assessors may raise questions about coverage for certain aspects of certification activities which are normally excluded from insurance policies.

QUESTION: Are expedite fees or volume discounts on certification fees considered discriminatory or undue financial conditions?

RESPONSE: In order for expedite fees or volume discounts (or other financial considerations between certifier and client) to be considered non-discriminatory and justifiable, the availability of such fees and discounts should be made known to all potential clients, and a process for applying such fees must be clearly laid out so that all parties taking advantage of them are considered equally. (Clause 4.6(b) of ISO/IEC 17065 requires that descriptions of fees charged to clients be documented and made available to clients upon request.) While not explicitly required by the standard or A2LA, if a certification body wishes to offer special pricing structures, it may be good practice to consider specifying “categories” that a client would fall into for these special pricing structures (e.g. “Clients with 0 to 50 applications per year receive no discount; 50 to 100 receive a 5% discount; etc.” or “To include your application in our expedited workflow line, the fee is xxx dollars due upon application receipt”). These suggested clarifications may assist the certification body in supporting their position if any questions over discriminatory practices are raised.

The certifier must take care to ensure that no special treatments are given, for example, to one client over another if both clients are equivalent in all other senses (e.g. both have paid the same expedite fee, or both have been informed of the same pricing discount). The fees, and the application of them, must not be constructed or used in such a manner as to impede or inhibit access by an otherwise qualified applicant. If a potential client were to issue a complaint about the prices charged by a certifier, A2LA expects the certifier to keep a record of those complaints received, and any subsequent actions, as required by section 7.13 of ISO/IEC 17065.

QUESTION: Is Application Review considered part of the Evaluation stage in the Certification Process, such that my Application Reviewer cannot also be a formal Reviewer (per Section 7.5) or Certification Decision Maker (per Section 7.6)?

RESPONSE: The Application Review stage of the certification process is a very fine line for Certification Bodies to
walk when considering duties assigned to its personnel. The Application Review cannot be automatically assumed to be an Evaluation activity without further examination by an assessor. The assessor will sample certification records and will interview various persons within the Certification Process in order to collect evidence demonstrating whether or not the person taking part in the Application Review has performed activity which is considered Evaluation.

When the tasks performed by the Application Reviewer are found to be administrative in nature only (e.g. requesting missing pages from an evaluation report, requesting a missing signature on the certification agreement, or requesting a sample of the product to be certified), then no, the Application Reviewer is not considered as having performed any Evaluation tasks.

However, any work performed by the Application Reviewer which results in the selection of a product to be certified, or which results in data/information that is or could be used in determining whether or not a product meets certification requirements, is considered part of the Evaluation process. This work would then preclude the Application Reviewer from taking part in the formal certification Review (7.5) and Decision (7.6) phases of the certification process.

QUESTION: Clause 7.6.4 seems to indicate that my organization MUST have organizational control over some entity. Is this the correct reading of this clause?

RESPONSE: A2LA reads clause 7.6.4 to be more of a definition of what Organizational Control IS, rather than something a Certification Body must exert. As such, there are many instances where Organizational Control will not come into play for a Certification Body. There are three clauses in the standard which reference Organizational Control of an outside entity by the Certification Body. A2LA assessors are instructed to examine how each Certification Body implements the following clauses, and, if no related bodies are utilized in the implementation of these steps, then clause 7.6.4 is Not Applicable for the Certification Body.

7.6.3: The Certification Body is permitted to essentially “outsource” the certification decision, but only if the person/group of persons making the decision is employed by or contracted to the Certification Body itself, or an entity that the Certification Body holds more than 50% control in. If the person/group making the decision is not employed or contracted by the CB or an “organizationally-controlled” entity, the CB cannot utilize that person or group to make the final certification decision. Note that committees are excluded from this clause by virtue of the requirements in clause 5.1.4 of the standard.

4.2.6: Any entity which the Certification Body has Organizational Control over is not permitted to design, manufacture, install, distribute, or maintain the product being certified. The Certification Body must be prepared to explain how they are ensuring that all related entities which are under Organizational Control are not performing any of these actions. Related entities NOT under Organization Control are not subject to these requirements, but are instead subject to examination for risks to impartiality under clauses 4.2.3 and 4.2.7.

7.6.5: The Certification Body must be able to demonstrate (with supporting record evidence) how it ensures that personnel in entities under organizational control are fulfilling the ISO/IEC 17065 requirements. Fulfillment of these requirements includes (but may not be limited to) requiring the existence of a contract with those personnel which meets the requirements of clause 6.1.3.

QUESTION: The certification scheme our organization operates does not include any guidance on the information that must be made available to the public about certified products. Is our organization allowed to make no information available in this case?

RESPONSE: There is a defined minimum amount of information required in clause 7.8 which must be published or made available upon request even if the scheme is silent on this subject. This minimum is “information ... about the validity of a given certification,” as outlined in the final sentence of this clause (e.g., by answering “Yes, that is a valid certification”).

The certification body may certainly go above and beyond the scheme in making information publicly available, but must meet the requirements in section 4.5 of ISO/IEC 17065 (confidentiality) in those instances.

QUESTION: The certification scheme our organization operates uses a certification mark for ongoing certification, but is completely silent on the actual surveillance actions to be taken. How is this to be handled so that we meet the requirements of clauses 7.9.1 and 7.9.3?
RESPONSE: While Note 2 under clause 7.9.1 indicates that criteria and processes for surveillance are to be defined by the certification scheme, A2LA realizes that many schemes are not written (or have not been updated) sufficiently to address the needs of the certification body.

In the case of a certification scheme being silent on any of the requirements for surveillance (e.g., frequency of surveillance, actions to be taken, percentages of certified products to be reviewed, etc.), and assuming that the Scheme Owner does not respond with any objective instruction for the certification body, A2LA requires the certification body to clarify how the surveillance will be performed, using a process similar to that called out in clause 7.1.3 for creating explanations for certification requirements. This information is then also to be made publicly available (upon request) pursuant to clause 4.6.a, as it relates to the certification scheme(s) being operated by the certification body.

The certification body must, at a minimum, define the actions taken to establish appropriate surveillance activities related to the product (e.g., how many products will be included, how they are to be acquired/selected, etc.), define the frequency of surveillance activities (e.g., per calendar year, in the first quarter of every year, etc.), and define the requirements which the product must meet (e.g., the product must meet original certification requirements in order to continue certification). The examples given in this paragraph are not meant to be all-encompassing, but should be taken as guidance in considering how to address the needs of the certification body and the ISO/IEC 17065 standard.

Additional guidance can be found in ISO/IEC 17067 for surveillance activities. A2LA encourages the use of this international guidance document for Certification Bodies which need to define their own surveillance activities.

A2LA Welcomes New Approved Lead Assessors

By Trace McInturff, A2LA Director of Accreditation Services

Since the previous issue of A2LA Today, the following individuals have achieved the status of “Staff-Approved Lead Assessors” and have begun performing assessments for A2LA:

- **Mr. Peter Waughtel** – 6/11/2014 – Peter, who resides in Rochester, NY, started his career by successfully completing the New York State Journeyman program as a Machinist. His career at Eastman Kodak spanned over 28 years including a 6-year stint with ITT Space Systems Division in Rochester, NY, formerly a division of Eastman Kodak. Peter later became a metrology technician working in the Dimensional Calibration Laboratory at Eastman Kodak and then progressed to the Primary Dimensional Standards Laboratory where he was actively involved in the automation of data collection and reporting on precision calibrations. Mr. Waughtel will be assigned to assessments in the calibration field.

- **Ms. Lonna Potter** – 6/20/2014 – Lonna resides in Kansas City, MO, has a Master of Science Degree in Microbiology, a Bachelor of Science Degree in Biology/Psychology and has thirty-three plus years of federal service, twenty-five years as a clinical microbiologist, three years as a supervisory food microbiologist for the FDA and six years as a supervisory consumer safety officer. Ms. Potter will be assigned to assessments in the Biological and Chemical (food, toxicology) fields of testing.

We welcome these individuals to the A2LA assessor corps!
An Accredited Organization’s Perspective:

Precision Thermal Processing

This column presents the unique perspective of one of our accredited organizations and how accreditation and implementation of ISO standards have benefited them. All accredited organizations are invited to submit their responses to the five standard questions posed below to our newsletter editor for consideration (submissions should be sent to: Teresa Barnett, A2LA Director of Quality & Communications, at tbarnett@A2LA.org.) In each issue of A2LA Today, we will present the responses submitted by one organization. This issue presents those submitted by Precision Thermal Processing in Clintonville, WI.

Why did your organization seek accreditation from A2LA?

A2LA is known in our industry to be the Cadillac of accreditation companies. Many of our customers refer to being ISO/IEC 17025 accredited and A2LA accredited as meaning the same thing; much like Kleenex and facial tissue. When we decided to become an accredited lab there was no decision to be made; it was going to be via A2LA.

How did the process of implementing an ISO standard bring to light areas for improvement that have made you a better organization?

Portions of our facility are certified to ISO 9001 and TS 16949, so many of the ISO/IEC 17025 requirements were not too out of the norm for us. The depth to which the requirements go, however, were much greater than what we had previously set up. It has provided us with a more detailed documentation process than we ever had before.

What benefits has your organization seen as a result of your A2LA accreditation?

Our lab has seen business growth since acquiring the accreditation in both external work and internal work that we no longer need to send out-of-house. The overall organization of the lab has also improved due to the accreditation requirements.

How has A2LA accreditation improved your marketability? How has your business changed for the better since gaining accreditation?

Both our parent company, Walker Forge, and our heat treat company, Precision Thermal Processing, have had positive feedback from a marketing standpoint. Customers appear to have an increased confidence in our laboratory abilities once they hear that we are A2LA accredited.

About Precision Thermal Processing:

Precision Thermal Processing has been in business for 63 years in the steel forging industry. They offer metallurgical testing services under their A2LA accreditation, such as hardness, tensile, Charpy, chemistry, etc. They are located in Clintonville, Wisconsin approximately 45 miles west of Green Bay.
“Accreditation? Accreditation? You really are going to do that?” said the Director of Genetic and Molecular Services at Covance Laboratories 15 years ago when Roger broke it to him that he had decided on a significant change in career direction after being offered a position as, what we now call, an Accreditation Officer at A2LA. “Why are you considering this move?” he asked again, perplexed that Roger was leaving after having worked and followed along with him for nearly 20 years at various biomedical contract research laboratories in the Washington, DC area. In response, Roger told him that he thought that people should be challenged to reinvent themselves every so often and that this move actually made sense, as it was really only changing the nexus of where he had been as a Study Director with respect to scientific quality control.

Roger had been exposed to the Total Quality Management precepts of Edward Deming and Philip Crosby at Covance and found them both useful and necessary. Crosby spoke about the Cost of Quality, referring to the cost of getting things done right the first time and wasted costs as a measure to gauge improvement. Deming considered quality as meeting the customer’s ever-moving requirements and was measured through the use of statistical process control and continuous improvement.

At first it might seem a little odd that this thinking would impact him, considering that most of those applying these concepts were in industrial manufacturing, yet somehow he found it could be applied to the area of contract research for which he was responsible.

One area of his research involved developing a biochemical means to evaluate different inhibitors of acetylcholinesterase for a large chemical manufacturing company. Acetylcholine is a neurotransmitter and functions to carry signals from motor nerve cells to muscle cells. But in order for another signal to be transmitted the acetylcholine must first be destroyed and that is the role of acetylcholinesterase. The research method Roger was developing had many components that had to work together in a very specific way and thus it was important that the equipment be properly calibrated, that reagents be evaluated before use and that meticulous technical records (an audit trail) be maintained. This was necessary both for following up as well as for trending the results and reporting.

Another area of responsibility Roger had was in the validation (and then attempting to try to commercialize) a relatively short-term in-vitro alternative to the rodent bioassay for detecting potential human chemical carcinogens. This assay, however, was often teetering around the edge of functionality: the cells were quite sensitive to the media, the reagents used and the environmental conditions. Thus he needed to have confidence in the suppliers, equipment, each batch of cells isolated, each component of the media and the positive controls run for QC. He found it necessary to track and trend the response for each of the components and sometimes follow up with the suppliers when the reagents did not provide an acceptable response.

Having to practice the quality principals of Deming and Crosby in the laboratory actually made Roger’s decision to join an organization that promotes their use in accreditation of testing laboratories seem like he was merely moving upstream from what he had been doing for a number of years. When he joined the Life Sciences group in 1999, A2LA was much smaller than it is now (there were a total of 18 employees) and a number of them still had hair on top of their heads! At that time the largest number of laboratories the group managed was in the area of Environmental testing and there were about 15 Food testing laboratories accredited to ISO/IEC Guide 25. Roger has been working with food testing laboratories ever since; however,

“In the sixteen years that I have worked with Roger, I have seen a colleague that possesses a strong commitment to advancing the life science accreditation programs by fully immersing himself in the food testing and bio-safety fields through research on industry developments, interaction with key industry and government players, and involvement in the development of current legislation and regulations. This provides him with an in-depth understanding of the disciplines resulting in the Association being uniquely positioned to effectively meet our customer’s needs.”— Randy Querry, A2LA Accreditation Manager

Continued on page 17
because of the Association’s considerable growth in this area, no longer is one person able to handle all of these by themselves (A2LA has grown more than 15 fold in this area).

Roger’s job title later changed to Biosafety Program Manager and it reflects the diverse types of laboratories and other conformity assessment organizations that he works with: including, federal (FDA, USDA, DoD, DHS), state, university and private sector testing labs, inspection bodies, reference material producers and proficiency testing providers whose activities range from foods, feeds and nutritional supplements testing, sport anti-doping testing, radiological and nuclear materials testing and biological and chemical threat agent testing and detection for both fixed address, brick-and-mortar and mobile laboratories. Recently he has been working towards developing a medical marijuana testing laboratory accreditation program. In this current position, he has the opportunity to represent A2LA at trade shows and scientific meetings and to present on accreditation-related topics at conferences and symposia. He is kept very busy…

On a personal note, Roger has a somewhat diverse set of interests and activities. After adopting Skye, his black German Shepherd, nearly 7 years ago from the Virginia German Shepherd Rescue (VGSR), he was sufficiently impressed by their organization that he volunteered with them in the early stages in the adoption process. In his volunteer role he visits the family and evaluates the home environment (both physical and human) to ensure that these dogs will have a safe place to live and that they will be properly cared for. Skye is the 4th German Shepherd that Roger has owned (including one, Borgia, a 90-pound pure-bred female that he got from A2LA President, Peter Unger). Roger also volunteers with the Maryland Board of Elections where, for the past several elections, he has served in the role of Chief Judge, responsible for managing the polling location.

For fun, Roger enjoys activities that allow one to “be in the moment”, whether it is white water canoeing down class III-IV rapids on one of the many local rivers in the greater Washington DC region, or driving his Porsche 911 at Summit Point race track on Porsche Club track days, or riding his Harley Davidson Road King on long trips like to the Great Smokies in Tennessee or up to the Adirondack mountains in New York. He used to enjoy skydiving as well (an activity he claims is quite relaxing … that is, once the chute opens). Interestingly enough, he has found that he can use a parachuting analogy when explaining the course of an assessment to some of A2LA’s new assessors. New assessors often do not approach assessments with a good sense of the amount of time it takes to complete all of the actions that must be taken before the assessment closing meeting. As a result, they often feel rushed at the end to get it all done in time, stressing unnecessarily. As a helpful analogy, Roger explains that, when skydiving, one falls at a constant rate and, at first, the ground looks so far away, leaving you to think that you have plenty of time to do all of the actions necessary to prepare to land; however, at 500 hundred feet, the ground seems to start getting closer, faster and, at 200 feet, it is practically racing toward you. In these situations, one finds that the ground does not particularly care one way or another how you land….

In his more sedate moments, but for many of the same reasons that he enjoys “living in the moment”, Roger enjoys playing bass guitar in a rock and roll band. One of his bands even had a chance to play at one of A2LA’s Christmas Parties. 😁

“Working with Roger has been very rewarding. Roger not only brings trust - which is fundamental in a team environment - but also a body of knowledge and experience that is very inspiring for those around him, both internally and outside of A2LA.” – Sylvana Ricciarini, A2LA Director of Government & Global Affairs.
The 2014 NCSL International Workshop & Symposium was held July 25-31, 2014 in Orlando, FL. The theme this year was “Measurement Science and the Environment”. The Key Note speaker was Dr. Martin Milton, Director of the BIPM, who talked about the challenges in establishing traceability for environmental data. There was also a plenary session on ISO/IEC 17025 held by Jeff Gust, VP of Standards and Practices, who also serves as the NCSL International representative to ILAC. Much of the discussion centered around possible changes to 17025.

A2LA staff, Pam Wright (Accreditation Manager, Calibration) conducted a tutorial on “Understanding ISO/IEC 17025” and Rob Knake (Program Manager, Proficiency Testing Providers) conducted a tutorial on “Root Cause Analysis”, both of which were well-received.

Many A2LA-accredited organizations were exhibiting or in attendance this year. Questions were answered at the A2LA booth and during meetings and the staff at A2LA thank those who stopped by. For inquiries or questions, please contact A2LA at 301-644-3248 or visit us on our web site at www.A2LA.org.